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Period control of chaotic systems by optimization

Ali Fouladi and J. A. Valdivia
Department of Physics, University of Maryland, College Park, Maryland 20742
(Received 19 August 1996

We introduce and implement a method of control based on optimization. An error function, which is a
measure of deviation from the desired time evolutipariodic motion, is constructed. The error function is
then minimized along the trajectory in order to stabilize an unstable periodic orbit. The process of optimization
is not arbitrary but constrained to the dynamics. No specific knowledge of the desired state of the system is
required. We also demonstrate how orbits of “high” period are similarly controlled.
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PACS numbdis): PACS number: 05.45:b

[. INTRODUCTION periodic orbit, either by observation or by computations, may
not be practicalhigh dimensional system®r the periodic
The term “chaos” is often used to describe low- orbits may not be fixed objects of the phase spatewly
dimensional, unpredictable time evolution accompanied bydriven systems There are also systems similar to the heart
extreme sensitivity to initial data — the behavior common tol6], where the phase space position as well as the type of the
many nonlinear dynamical systems. In many applicationsPeriodic orbits may change depending on the operational re-
regions of the parameter space where nonlinear effects afilirements. Often, in the case of biological and chemical
present are avoided, or the chaotic motion is eradicated b§ystems, a control parameteris not accessible. Control of
some large modification of the underlying system. Evidently all such systems, we believe, may be accomplished within
major modifications are costly and truncation of the paramthe framework of optimization, as illustrated below.
eter space may be too restrictive an approach. An alternative
is to take advantage of the basic properties inherent in a Il. THE METHOD

chaotic system. A chaotic attractor, unlike a linear system in . .

which a given parameter renders only one type of motion We perturb the system shgh_tly to accomplish _the control

possesses infinitely many periodic orbits, and many differenttaSit(h a;d ftr;e small per:_urbat:;)nbs WZ requ([mhkle thet d

time evolutions are simultaneously possible. Furthermoren:et0 OT[ ]).arel sp”emtlc anh ased on a %oa oriente

the motion on the chaotic attractor is exponentially sensitiv rategy. 10 Simply 1llus rate the point, we chose a map-
ased time evolutior,,, ;=F(x,,p). Our strategy, rooted in

to small perturbations. Ott, Grebogi, and York@GY) [1] v onELT A Ve defing
illustrated not only that chaotic systems may be controlled®PtiMmization, consists in minimizing a positive defindeor
n{gnctlon given by

but that the richness of possible behaviors in chaotic syste
may be exploited to enhance the performance of a dynamical 9,=9(X,,Pr) )
system in a manner that would not be possible had the sys- n neEns

tem’s evolution not been chaotic. Shortly after this publica-wherex,, are the state variables apg the system parameters
tion, Ditto et al. [2] reported a successful laboratory imple- which may or may not be time dependent. For simplicity,
mentation of the control strategy outlined ifl],  consider a scenario where a steady state*) behavior of
demonstrating that controlling chaos is not just in theory, bugn otherwise chaotic system is desired. For now we ignore
physically attainable as well. The method of OB and its  the parametep (see Sec. Iy, The error function is con-
variations[3] control a chaotic dynamical system by first syrycted by embodying a general attribute of the desired orbit
identifying a periodic orbit and applying small perturbationsinto an expression, the evolution of which is constrained by
to a system parametqy to stabilize the unstable periodic the dynamics. Here, a general attribute of the desired @abit
orbit. It was later showii4,5] by methods unrelated to OGY  fixed point in this caseis thatF[x,]=x, for all ne N. Con-
that the system may also be controlled by perturbing the statgger then, as a measure of theor,
variables directly. However, while the latter approach does
not result in a goal oriented control and the final state is g(x,) =[F(X,) —Xn]?, 2
periodic but otherwise arbitrary, the former results in a de-
sired periodic orbit and we will refer to it in the following which is clearly minimized when the system reaches a steady
sections. state. Many other measures of error can be defined, such as
The following question motivates our method: is a goal[ f(x,) —x*]? or (x,—x*)?, and in general a given measure
oriented control without any explicit knowledge of the goal of the error will give a different controller. But for the pur-
orbit possible? We believe the answer is yes and the gogloses of this paper we will assume that we do not want to
oriented control may be accomplished by controlling the peuse(or do not know any specific information about the pe-
riod and not the state. The relevance of this question is eviriodic orbits in order to control them, therefore, we will con-
dent since in many engineering applications the goal is teentrate on the error measure given by &j). To formulate
convert chaotic time evolution to a periodic motion of a spe-the problem in the context of optimal control, we need to
cific period, i.e., period control. Furthermore, identifying a find a sequence of small perturbatioes, so that a suitable
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performance index is minimized. In the presence of smalll992, Pyraga$4] suggested an interesting feedback mecha-

perturbations the dynamical system is then given by
()

The magnitudey(x,) is used as a flag for when the con-
trol is to be applied g(x,,) is small and when it should be
relinquished g(x,) is largg. This defines the threshold con-
dition |g(x,)|<TI', whereI is chosen so that the control is
kept “small,” a premise implicit in small perturbations con-
trol. The form of ourerror dictates a quadratic optimal con-
trol approach, whereby a quadratic performance index,

Xn+1=F(Xn) + €n.

N—o N— o

J=—n§O [9(Xn) + €nBen]= nzo in, (4)

is minimized to determine the sequengge In general B is

nism, whereby the past history of the system was used to
stabilize the system to its fixed point,
Xn+1=M(X,) +K(X,_1—Xp). There are two relevant issues
of this publication that we must discuss. First, the final form
of the algorithm mentioned by the authof4]) can be ob-
tained by optimizing a proper performance index. Second,
after the appearance pf] a number of investigators success-
fully applied the control methoddescribed therejnto real
circuits modeled by ordinary differential equations, which
suggests that the algorithm given by E@) may also be
effective in “real” applications. However, there are differ-
ences between the method developed in this paper and that
of [4] besides the different approaches in obtaining the re-
spective controllers. The specific algorithm of E@) does

not increase the dimension of the system, keeping the trac-
tability and hence the analysis of the problem manageable,

a matrix specifying how the various degrees of freedom arguhereas the algorithm suggested4j increases the dimen-

combined in the construction of a performance index.

Before resorting to the formal methods of optimal controlpe

theory (presented in the Sec. JYwe minimize Eq.(4) with-

out any constraints. Considering this question is justifiecyt

sinceg(x,) may be thought of as a “quasipotentigl7], the

sion of the original system. Equatiof¥) may naturally
generalized to stabilize the systemq
to any desired periodsee below, however by the form
the control suggested[e,=k(x,_1—X,) [4]], an
(m+1)-dimensional system has to be considered when sta-

minimization of which yields the sequence of steps, the pathjlizing a periodm orbit.

in the phase space, needed to go frapto x*. Minimizing

Eq. (4) free of constraints leads to the following set of equa-

tions
Jn

T g 1 In
Jen

It 0. (5)

Sen=

Ill. ILLUSTRATIONS AND EXAMPLES
(PROOF OF PRINCIPLE)

As a simple yet illustrative example, we apply our method
to the logistic magF (x,,,») = vx,(1—X,), for v=4 the map
is chaotic. This map is a simple model for the time evolution

Intuitively, we know near the fixed point the perturbations of a certain insect populatiofMay [16]). The period-1 orbit

are proportional to the state variablgg,o 5x,, (in the limit

of small perturbations This assumption leads one to the

conclusion that
(6)

Combining Egs.(3) and (6) shows that, given the state
variablex, that admits a smaly(x,), the dynamical system
can be directed to its fixed point by

en~aVa(x,).

Xp+1=F(Xy) +aVg(x,),

()

(fixed poiny of this map isx* =2 and|F'(x*,v)|>1, hence

x* is unstable and repels the nearby points. When
g(x,)<TI', the threshold, the control algorithm perturbs
F(x,) to H(x,)=F(x,)+e, (see Sec. Y. Figure Za)
shows the stabilized period-1 orbit. In accordance with small
perturbations controll” is kept small andv is chosen with
prudence to constrain the size §f. The effect of feedback

is best illustrated by superposifgx,) andH(x,), as shown

in Fig. 1(a), and the perturbation is shown to be small. To
examine the rolex plays, consider the expression for stabil-

ity

wherea can be a matrix if required. To lend credence to Eq.

(7), let us examine the resulting perturbed system near the

fixed point,x,~x*. It is important to note that we do not

IDF(x*)+aD(Vg)(x*)|<1, (8)

require any specific knowledge of the fixed point, thereforewhich can be solved to determine the required strength of the

we expand the perturbed system of E@). about the point
Xp—1 and denote the deviation byx,. We obtain
Xnr1=[DF(X,)+aD(Vg)(X,)16%,. The control is
achieved byéx,,,1/6x,—0 with increasingn which con-
strains « (a matrix in general such that
IDF(x,)+aD(Vg)(X,)|<1. A value ofa can then be ob-
tained from this constraint equation, since it is linearain
Furthermore, the correctidfieedback errgrvery close to the
fixed point is actually proportional to the deviatidix,,, as

coupling, hence for alkx e (3, 3) the systen{Eq. (7)] con-
verges to the fixed point of the unperturbed map. The advan-
tage of our method is most significant when employed to
stabilize high period orbits. Imagine an application for which
switching between orbits of different periods is required. Of
the many periodic orbits embedded in an attractor, there may
exist many with the same period, each having its own basin
of attraction. Here we do not discriminate between the dif-
ferent periodic orbits of the same period; we only require the

(intuitively) expected, but turns into a nonlinear perturbationperiod to be specific. Therefore, when the control is applied,

away from the fixed point.

a#0, and a periodn orbit stabilized, it may be any one of

It is very important to realize that depending on the per-the possible orbits of perioth, depending on the basin of
formance index we choose, we obtain different controllersattraction that was visited first. The nonspecific nature of the

e.g., eg=a(X,—x*) , e,=a[F(x,)—x*], and so on. In

orbit enlarges the set of suitabte values. Specifically, let
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LOGISTIC T =1 I = 0.005 to execute a series of switching by the successive stabiliza-
- ' 7] tion of periodic orbits of period 1 to period[Fig. 2b)]. The
1 only thing needed to carry the switching between orbits of
o8l ] different periods is the numbem. When the dynamical
i 1 equations are not known or when computlrjgf; is too cum-

bersome|l iaj may be found by trial and error. However, it

may be more efficient to estimate the equations governing
L ] the system dynamics near the desired periodic oflsie®
oar 7 remark(3)], and approximate a suitabte Figure Xb) illus-
trates a superposition of the perturbed maps for all periods,
from m=1 to m=5. It is clear that the actual map is not
significantly altered by the application of these perturbations.
The required control strength is shown in Figc)2

1.0 1

0.6 — =

FIX]

02 .

x ' A IV. DISCUSSION

LOGISTIC T=1-5 [ = 0.005
1.0 T T T T

A. A brief discussion on parametric control

I ] OGY type of control may be considered as a special case
08l - of optimization. Parametgy can be treated as a system vari-

i ] able p, [8]. By using appropriate performance indexes we
can obtain more traditional controllers such as
Pn+1=P* = a@(Xn=X*), Pn+1=P* —a[F(X,) —X,], and so
on, wherep* is the goal parameter. For illustration, we took
o4l ] an appropriate  performance index to  obtain

i 1 Pne1=Pp* —a[dg(X,,pn)/dp,] and applied it to stabilize

06 =

F[X]

the Henon mapgand others that will be presented elsewhere

1 e

Xn+1=1.3- X2+ p¥y,, (12)

0.0 N I ! ! 1

0.0 0.2 0.4 0.6 0.8 1.0
(b) X

Yn+1=Xn- (12
FIG. 1. (a) The logistic map, perturbed so as to stabilize the

period m=1 orbit. a« is set to a nonzero value when ! . .
g(x,)<I"=0.005.(b) The superposition of the majpi(x) required Hennon magFig. 3(@)] along with the control strengfFig.

to control periods 1 to 5 for the logistic map. The small features areS(b)] are plotted. The parameteris obtained from the con-

the deviations from the unperturbed map and are caused by thra@ined equation, aX83 matrix, which is linear ine making
perturbations of the control signal. its solution tractable. The extension to higher dimensions is

again trivial, though a little more involved.

For p* =0.3, as shown in Fig. 3, the component of the

I™ be the interval containing all values of for which a

periodm orbit is stabilized. Then, B. Minimization constrained by a rule
M Let us now consider the formal approach to minimization
[M= ™ (99 that is constrained by a rule. The minimization of Kd)
(23 a; !

1 subject to a constraint, E3), can be solved by incorporat-
ing the constraint in the function to be minimized by the use
wherel is the interval ofa that stabilizes theéth period  of Lagrange multiplier§10]. Using the Lagrange multipliers,

m orbit. To illustrate how a high period orbit may be con- M1), A(2), ... wedefine a new performance index
trolled, consider the case where an unstable periagbit of

a one-dimensional map is to be stabilized. A suitadier €nBen

functional, assuming again no explicit knowledge of the pe- P= 2 9(xq)+ 5 TAMN+ED[F(X) + en—Xn1]],

riodic orbits, is " (13

9(Xp) = [F™(Xp) = Xp| % (10 the minimization of which requires the solution of the fol-

. . . . _ .. lowing expressions:
Control is achieved by allowing the dynamics to minimize

the error, as was done for the period-1 orbit. Evidently, the

algorithm does not require specific information about the de-
sired orbit. The dynamics finds a suitable periodic orbit and
no tracking of the high period orbit is necessary, hence the
) ) : o - aP

information overhead is minimal. We choose the logistic —=Be+\.1=0, (15)
map as a “proof of principle” demonstration and control it €

P
o~ V9(Xn) T A DF(Xi) =i =0, (14)
i
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LOGISTIC T = . ;(1 VARIABLE X,
| 1.75
1.5
B 1.25
1
i 0.75
0.5
NS 0.25
- (a) © 50 100 150 200
CONTROL X1 - CONTROL
1 0.04
0.02
L L 1 L o'l i
(a) o 1000 2000 . 3000 4000 5000 [ 100 150 200T
-0.02
LOGISTIC T =1 -5
1.0 T -0.04
-0.06
0.8 (b)
06 FIG. 3. (a) The x component of the controlled Henon map as a
' function of time.(b) The size of the control.
04 Equation (16) simply expresses the time evolution in the
presence of the correction, E¢L5 relates the Lagrange
o multipliers to the corrections, and E¢l4) determines the
' sought after sequence, and in fact deserves a closer look
since it contains information about a new feature of the dy-
0.0

: e ot namics, not shared by the unperturbed map. Solving Ej.

(b) 1000 oo e * " and substituting the result in E6L4) indicates how one may
go about calculating the perturbation sequence. Tradition-
ally, in applying the optimal control method to a linear prob-
lem, N is determined in advance and a variation with respect
I ] to the final statex(N), determines the final value of the
0.000 s ; Lagrange multipliershy . Knowing Ay, Egs.(14) and(15)

I ] are then used to compute the correction sequence in advance
and apply the results when the system is in operation, which
leads to the desired final staftél]. In the present applica-
tion, however, we consider the steady state form of the op-
timal control,N—«. To eliminate the Lagrange multipliers
from the expressions, Eq$l4) and (15) are combined to

CONTROL

C.005 T T

-0.005

-0.010

B B give
—0.01sL | G.ZEV (Xn) ! + €; ! (17)
© o 1000 2000 e 3000 4000 5000 iTB 9(Xn) D F[Xi] i—-1 D F[Xi ] !

FIG. 2. (a) The periodm=1 orbit of the logistic map is stabi- 9iving @ 2D system where;,, is given by Eq.(16). To
lized. The thin vertical linegrunning top to bottormindicate the ~€Xamine the stability of the above system, the eigenvalues of
iterate number at which the control was turned es:0 and off, the Jacobian for Eq(8) evaluated at the final state are
a=0. (b) Period 1 to period 5left to right) of the logistic map are needed. The performance indgxq. (2)] leads to the fixed
controlled.(c) The time history of the control signal, always smaller point of the mapx* . For the particular case of a 1D map, the

than 2% of the size of the attractor. Jacobian of this 2D system is
9P e? 1/d\?
(?_M_F(Xi)"'fi_xi%—l_oy (16) d+fa 1+? E)
. . . J: 2 )
whereDF[x] is the Jacobian. This system may be solved to L[(ed)2+fe4+e2] i 02 1 9 +}
determine the sequences of correctiguerturbationsthat in d? d fle f

the limit of N—o leads to the desired periodic motion. (18
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where d=F'(x’)#0, e=F(x’')—1, and f=1/B. For a 100 S —
simple map, such as the logistic map, we can solve the char- [
acteristic equation dei(- 1v) =0 to determine the eigenval-
ues. This yields intervaléof nonzero measuyeof f on the S
real line where bothy,| and|v,| are less than 1 and hence ! ) slope ~0.52
convergence to the fixed poifi®]. Even though the above )
method is stable and leads to the desired final state, there ig
yet a simplification that leads to a less cumbersome prescrip-"
tion for implementing the control algorithm. Loosely speak-
ing, once we havee;| small, we want to forcee;, ;| —0,
which modifies the control algorithm to be

1
ei%EVg(Xn)r (19 10 e

0.001 0.010 0.100
Threshold I

which is the same result as before.

For the case when the system’s equations are not kKi@own  F|G. 4. The average timéhe number of iterates in the case of
priori, and reconstructing a map from data is eminent, monimaps it takes for the control to become effective vs the size of the
toring g(x,) as opposed to its derivative might become anthreshold forg(x,),I" (for the logistic majp
issue, and then an appropriate error meag)irg), such as
the one in which the controller is linear #i(x,) or even (i) Within the framework of our strategy, a similar tech-
X, (as in traditional feedbagk might be more appropriate. nique can be applied directly to a system of ordinary differ-
Of course when faster convergence is desired(Bgnay be  ential equationsdx/dt=F(x,p). There are in fact two ap-
used. Faster convergence comes about as a consequencéeffaches to this problem. First, the Poincateface of the
the inclusion ofVg(x,) (in the expression for the correc- section may be used to develop a map, and apply the control
tions), which leads to an enlargement of the control regionaso the map directly. Second, by  minimizing
opposed to straightforward feedbadr the type Pyragas g(x,T)=[x(t)—x(t—T)]?, the chaotic flow is stabilized to a
suggestedi4]) where the small perturbations control is appli- |imit cycle, whereT can be found by monitoring the evolu-
cable. Detailed studies of these issues will be given elsetgon of g(x,T) [12] (detailed discussion will be given [9]).
where. However, as a special case of stabilizing a steady state,

F=0, we chose the Lorenz systefd3]. By minimizing
C. Noisy state variables [|[F(x,p)||, the system was controlled to the steady state at
(the origin, Fig. 5. This method of control can be used to

An important question concerning any method for contro - . : -
b d g any %abmze orbits not on the attractor, still keeping the control

of chaos is its robustness against external noise. This issue
very relevant in practical applications where dealing Withsmz.i_l.l' . .
noise and its consequences are inevitable. We put our algo- (iil) If @n accurate model of the system is not available,
rithm to the test by applying noise to our numerical simula-W& can resort to the methods of embeddidg]. We can
tions (keeping in mind that the optimization is to the lowest rec.onstruct a local version of the map arou_nd_ pqlnts for
orden. We found, for reasonable noise levels, control is ef-Wh'Ch 9(Xn) is small. _The prpcedure of optimization of
fective as long ad’ =ca, wherel is the threshold for 9(Xn) can then be applied straightforwardlys].

a(x,), ¢ a positive constant of order unity, amdthe noise
level [9]. As expected, for a small threshold it takes longer <lt]

for the control to become effectid], as is shown in Fig. 4 10 VARTABLE
for the logistic map.

7.5F

V. CONCLUSION st

We conclude with a series of remarks intended to illus- 2-5}
trate the scope of application and versatility of our approach . t
6 1] 1 190 200 210 220

to the control of chaotic systems.

(i) We construct an error function, the performance index, ~
as a measure of the deviation from the desired behavior. As -5
such, the error function is general in that it needs to include _
only the performance specificatioris.g., periodicity and
nothing else. This means that if any of the attributes of the -9
desired time evolution can be embodied in an error function,
the method we present renders the system controlled by op-
timizing the constructed error function. A performance index FIG. 5. The Lorenz system is stabilized around the steady state
may be any observable, the output intensity of a laser, or thex,y,z)=(0,0,0) orbit. The control perturbation was smaller than
efficiency associated with heat dissipation in a power array% of the extent of the attractor. The control may still be achieved
(field effect transistops with smaller values of control signal; however, it would take longer.

2.5

7.5
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x[t] small driving amplitudes for which the structural stability of
8 NO CONTROL the system is intact, the periodic orbits move while remain-
6 ing topologically equivalent to the periodic orbits of the sys-
; A tem without driving. We take the Lorenz systdi3] and
. drive one of its parameters sinusoidally in time. The control
s 10 g2 30 (1, 3° moves the system ‘“close” to the actual driven steady state,
-4 Fig. 6. This technique may be relevant in the case of systems
-6 similar to the hearf6], for which the system’s characteristics
@ -s change under different operating conditions, hence changing
xlt] the phase space coordinates of the periodic orbits.
8 WITH CONTROL (v) The method of optimal control, as applied to linear
6 systems, is well established in the literature. We believe the
‘21 methods of optimal control, though not directly applicable to

. nonlinear systems, may be modified to yield a broader un-
> P/ wo derstanding of the mechanisms responsible for the type of
4 periodic behavior brought on by arbitrary perturbatigo$
-6 the kind introduced ih5]) of a chaotic system. Our prelimi-
(b) g nary results indicate that using an approach outlindd@Jjna
strategy very similar to that of standard optimal control may
FIG. 6. (a) The unperturbed but driven Lorenz system looks be devised to control a low-dimensional chaotic system to a

qualitatively similar to the undriven system, however here the peperiodic behavior. A complete reporting and discussion of

riodic orbits are not fixed features of the phase spélgeln the  these results will be given elsewhd.
presence of control, the orbit is very quickly taken to the vicinity of

the moving steady state.

(iv) We alluded earlier to the feasibility of applying this ACKNOWLEDGMENTS
method to slowly driven system@®r systems that change
“slowly” over time). The periodic orbits of a driven system  A. F. thanks C. Cerebogi and J. Yorke for their support.
are no longer fixed objects of the phase space, and in fact, fakA.V. thanks K. Papadopoulos and S. Sharma for support.
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