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Period control of chaotic systems by optimization

Ali Fouladi and J. A. Valdivia
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 19 August 1996!

We introduce and implement a method of control based on optimization. An error function, which is a
measure of deviation from the desired time evolution~periodic motion!, is constructed. The error function is
then minimized along the trajectory in order to stabilize an unstable periodic orbit. The process of optimization
is not arbitrary but constrained to the dynamics. No specific knowledge of the desired state of the system is
required. We also demonstrate how orbits of ‘‘high’’ period are similarly controlled.
@S1063-651X~97!02001-1#

PACS number~s!: PACS number: 05.45.1b
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I. INTRODUCTION

The term ‘‘chaos’’ is often used to describe low
dimensional, unpredictable time evolution accompanied
extreme sensitivity to initial data — the behavior common
many nonlinear dynamical systems. In many applicatio
regions of the parameter space where nonlinear effects
present are avoided, or the chaotic motion is eradicated
some large modification of the underlying system. Eviden
major modifications are costly and truncation of the para
eter space may be too restrictive an approach. An alterna
is to take advantage of the basic properties inherent i
chaotic system. A chaotic attractor, unlike a linear system
which a given parameter renders only one type of moti
possesses infinitely many periodic orbits, and many differ
time evolutions are simultaneously possible. Furthermo
the motion on the chaotic attractor is exponentially sensi
to small perturbations. Ott, Grebogi, and Yorke~OGY! @1#
illustrated not only that chaotic systems may be controll
but that the richness of possible behaviors in chaotic syst
may be exploited to enhance the performance of a dynam
system in a manner that would not be possible had the
tem’s evolution not been chaotic. Shortly after this public
tion, Ditto et al. @2# reported a successful laboratory impl
mentation of the control strategy outlined in@1#,
demonstrating that controlling chaos is not just in theory,
physically attainable as well. The method of OGY@1# and its
variations @3# control a chaotic dynamical system by fir
identifying a periodic orbit and applying small perturbatio
to a system parameterp to stabilize the unstable periodi
orbit. It was later shown@4,5# by methods unrelated to OGY
that the system may also be controlled by perturbing the s
variables directly. However, while the latter approach do
not result in a goal oriented control and the final state
periodic but otherwise arbitrary, the former results in a d
sired periodic orbit and we will refer to it in the following
sections.

The following question motivates our method: is a go
oriented control without any explicit knowledge of the go
orbit possible? We believe the answer is yes and the g
oriented control may be accomplished by controlling the
riod and not the state. The relevance of this question is
dent since in many engineering applications the goal is
convert chaotic time evolution to a periodic motion of a sp
cific period, i.e., period control. Furthermore, identifying
551063-651X/97/55~2!/1315~6!/$10.00
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periodic orbit, either by observation or by computations, m
not be practical~high dimensional systems! or the periodic
orbits may not be fixed objects of the phase space~slowly
driven systems!. There are also systems similar to the he
@6#, where the phase space position as well as the type o
periodic orbits may change depending on the operationa
quirements. Often, in the case of biological and chemi
systems, a control parameterp is not accessible. Control o
all such systems, we believe, may be accomplished wi
the framework of optimization, as illustrated below.

II. THE METHOD

We perturb the system slightly to accomplish the cont
task and the small perturbations we require~unlike the
method of @5#! are specific and based on a goal orient
strategy. To simply illustrate the point, we chose a ma
based time evolutionxn115F(xn ,p). Our strategy, rooted in
optimization, consists in minimizing a positive definiteerror
function given by

gn5g~xn ,pn!, ~1!

wherexn are the state variables andpn the system parameter
which may or may not be time dependent. For simplici
consider a scenario where a steady state (x* ,p* ) behavior of
an otherwise chaotic system is desired. For now we ign
the parameterp ~see Sec. IV!. The error function is con-
structed by embodying a general attribute of the desired o
into an expression, the evolution of which is constrained
the dynamics. Here, a general attribute of the desired orb~a
fixed point in this case! is thatF@xn#5xn for all nPN. Con-
sider then, as a measure of theerror,

g~xn!5@F~xn!2xn#
2, ~2!

which is clearly minimized when the system reaches a ste
state. Many other measures of error can be defined, suc
@ f (xn)2x* #2 or (xn2x* )2, and in general a given measu
of the error will give a different controller. But for the pur
poses of this paper we will assume that we do not wan
use~or do not know! any specific information about the pe
riodic orbits in order to control them, therefore, we will co
centrate on the error measure given by Eq.~2!. To formulate
the problem in the context of optimal control, we need
find a sequence of small perturbations,en , so that a suitable
1315 © 1997 The American Physical Society
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1316 55ALI FOULADI AND J. A. VALDIVIA
performance index is minimized. In the presence of sm
perturbations the dynamical system is then given by

xn115F~xn!1en . ~3!

The magnitudeg(xn) is used as a flag for when the co
trol is to be applied@g(xn) is small# and when it should be
relinquished@g(xn) is large#. This defines the threshold con
dition ug(xn)u,G, whereG is chosen so that the control
kept ‘‘small,’’ a premise implicit in small perturbations con
trol. The form of ourerror dictates a quadratic optimal con
trol approach, whereby a quadratic performance index,

J5
1

2 (
n50

N→`

@g~xn!1enBen#5 (
n50

N→`

j n , ~4!

is minimized to determine the sequenceen . In general,B is
a matrix specifying how the various degrees of freedom
combined in the construction of a performance index.

Before resorting to the formal methods of optimal cont
theory~presented in the Sec. IV!, we minimize Eq.~4! with-
out any constraints. Considering this question is justifi
sinceg(xn) may be thought of as a ‘‘quasipotential’’@7#, the
minimization of which yields the sequence of steps, the p
in the phase space, needed to go fromxn to x* . Minimizing
Eq. ~4! free of constraints leads to the following set of equ
tions

] j n
]xn

dxn1
] j n
]en

den50. ~5!

Intuitively, we know near the fixed point the perturbatio
are proportional to the state variable,den}dxn ~in the limit
of small perturbations!. This assumption leads one to th
conclusion that

en'a¹g~xn!. ~6!

Combining Eqs.~3! and ~6! shows that, given the stat
variablexn that admits a smallg(xn), the dynamical system
can be directed to its fixed point by

xn115F~xn!1a¹g~xn!, ~7!

wherea can be a matrix if required. To lend credence to E
~7!, let us examine the resulting perturbed system near
fixed point, xn'x* . It is important to note that we do no
require any specific knowledge of the fixed point, therefo
we expand the perturbed system of Eq.~7! about the point
xn21 and denote the deviation bydxn . We obtain
dxn115@DF(xn)1aD(¹g)(xn)#dxn . The control is
achieved bydxn11 /dxn→0 with increasingn which con-
strains a ~a matrix in general! such that
uDF(xn)1aD(¹g)(xn)u,1. A value ofa can then be ob-
tained from this constraint equation, since it is linear ina.
Furthermore, the correction~feedback error! very close to the
fixed point is actually proportional to the deviationdxn , as
~intuitively! expected, but turns into a nonlinear perturbati
away from the fixed point.

It is very important to realize that depending on the p
formance index we choose, we obtain different controlle
e.g., en5a(xn2x* ) , en5a@F(xn)2x* #, and so on. In
ll
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1992, Pyragas@4# suggested an interesting feedback mec
nism, whereby the past history of the system was used
stabilize the system to its fixed poin
xn115M (xn)1k(xn212xn). There are two relevant issue
of this publication that we must discuss. First, the final fo
of the algorithm mentioned by the author~ @4#! can be ob-
tained by optimizing a proper performance index. Seco
after the appearance of@4# a number of investigators succes
fully applied the control method~described therein! to real
circuits modeled by ordinary differential equations, whi
suggests that the algorithm given by Eq.~7! may also be
effective in ‘‘real’’ applications. However, there are diffe
ences between the method developed in this paper and
of @4# besides the different approaches in obtaining the
spective controllers. The specific algorithm of Eq.~7! does
not increase the dimension of the system, keeping the t
tability and hence the analysis of the problem managea
whereas the algorithm suggested in@4# increases the dimen
sion of the original system. Equation~7! may naturally
be generalized to stabilize the system
to any desired period~see below!, however by the form
of the control suggested@en5k(xn212xn) @4##, an
(m11)-dimensional system has to be considered when
bilizing a period-m orbit.

III. ILLUSTRATIONS AND EXAMPLES
„PROOF OF PRINCIPLE …

As a simple yet illustrative example, we apply our meth
to the logistic mapF(xn ,n)5nxn(12xn), for n54 the map
is chaotic. This map is a simple model for the time evoluti
of a certain insect population~May @16#!. The period-1 orbit
~fixed point! of this map isx*5 3

4 anduF8(x* ,n)u.1, hence
x* is unstable and repels the nearby points. Wh
g(xn)<G, the threshold, the control algorithm perturb
F(xn) to H(xn)5F(xn)1en ~see Sec. IV!. Figure 2~a!
shows the stabilized period-1 orbit. In accordance with sm
perturbations control,G is kept small anda is chosen with
prudence to constrain the size ofen . The effect of feedback
is best illustrated by superposingF(xn) andH(xn), as shown
in Fig. 1~a!, and the perturbation is shown to be small. T
examine the rolea plays, consider the expression for stab
ity

uDF~x* !1aD~¹g!~x* !u,1, ~8!

which can be solved to determine the required strength of
coupling, hence for allaP( 1

18,
3
18) the system@Eq. ~7!# con-

verges to the fixed point of the unperturbed map. The adv
tage of our method is most significant when employed
stabilize high period orbits. Imagine an application for whi
switching between orbits of different periods is required.
the many periodic orbits embedded in an attractor, there m
exist many with the same period, each having its own ba
of attraction. Here we do not discriminate between the d
ferent periodic orbits of the same period; we only require
period to be specific. Therefore, when the control is appli
aÞ0, and a period-m orbit stabilized, it may be any one o
the possible orbits of periodm, depending on the basin o
attraction that was visited first. The nonspecific nature of
orbit enlarges the set of suitablea values. Specifically, let
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I a
m be the interval containing all values ofa for which a
periodm orbit is stabilized. Then,

I a
m5 ø

i51

M

I a i
m , ~9!

where I a i
m is the interval ofa that stabilizes thei th period

m orbit. To illustrate how a high period orbit may be co
trolled, consider the case where an unstable periodm orbit of
a one-dimensional map is to be stabilized. A suitableerror
functional, assuming again no explicit knowledge of the p
riodic orbits, is

g~xn!5uFm~xn!2xnu2. ~10!

Control is achieved by allowing the dynamics to minimi
the error, as was done for the period-1 orbit. Evidently, t
algorithm does not require specific information about the
sired orbit. The dynamics finds a suitable periodic orbit a
no tracking of the high period orbit is necessary, hence
information overhead is minimal. We choose the logis
map as a ‘‘proof of principle’’ demonstration and control

FIG. 1. ~a! The logistic map, perturbed so as to stabilize t
period m51 orbit. a is set to a nonzero value whe
g(xn)<G50.005.~b! The superposition of the mapsH(x) required
to control periods 1 to 5 for the logistic map. The small features
the deviations from the unperturbed map and are caused by
perturbations of the control signal.
-

-
d
e

to execute a series of switching by the successive stabi
tion of periodic orbits of period 1 to period 5@Fig. 2~b!#. The
only thing needed to carry the switching between orbits
different periods is the numberm. When the dynamical
equations are not known or when computingI a j

i is too cum-

bersome,I a j

i may be found by trial and error. However,

may be more efficient to estimate the equations govern
the system dynamics near the desired periodic orbits@see
remark~3!#, and approximate a suitablea. Figure 1~b! illus-
trates a superposition of the perturbed maps for all perio
from m51 to m55. It is clear that the actual map is no
significantly altered by the application of these perturbatio
The required control strength is shown in Fig. 2~c!.

IV. DISCUSSION

A. A brief discussion on parametric control

OGY type of control may be considered as a special c
of optimization. Parameterp can be treated as a system va
able pn @8#. By using appropriate performance indexes w
can obtain more traditional controllers such
pn115p*2a(xn2x* ), pn115p*2a@F(xn)2xn#, and so
on, wherep* is the goal parameter. For illustration, we too
an appropriate performance index to obta
pn115p*2a@dg(xn ,pn)/dpn# and applied it to stabilize
the Henon map~and others that will be presented elsewhe
@9#!,

xn1151.32xn
21pn* yn , ~11!

yn115xn . ~12!

For p*50.3, as shown in Fig. 3, thex component of the
Hennon map@Fig. 3~a!# along with the control strength@Fig.
3~b!# are plotted. The parametera is obtained from the con-
strained equation, a 333 matrix, which is linear ina making
its solution tractable. The extension to higher dimension
again trivial, though a little more involved.

B. Minimization constrained by a rule

Let us now consider the formal approach to minimizati
that is constrained by a rule. The minimization of Eq.~4!
subject to a constraint, Eq.~3!, can be solved by incorporat
ing the constraint in the function to be minimized by the u
of Lagrange multipliers@10#. Using the Lagrange multipliers
l(1), l(2), . . . wedefine a new performance index

P5 (
n50

N Fg~xn!1
enBen
2

1l~n11!@F~xn!1en2xn11#G ,
~13!

the minimization of which requires the solution of the fo
lowing expressions:

]P

]xi
5¹g~xn!1l i11DF~xi !2l i50, ~14!

]P

]e i
5Be i1l i1150, ~15!

e
he
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1318 55ALI FOULADI AND J. A. VALDIVIA
]P

]l i
5F~xi !1e i2xi1150, ~16!

whereDF@x# is the Jacobian. This system may be solved
determine the sequences of corrections~perturbations! that in
the limit of N→` leads to the desired periodic motion

FIG. 2. ~a! The periodm51 orbit of the logistic map is stabi-
lized. The thin vertical lines~running top to bottom! indicate the
iterate number at which the control was turned on,aÞ0 and off,
a50. ~b! Period 1 to period 5~left to right! of the logistic map are
controlled.~c! The time history of the control signal, always smalle
than 2% of the size of the attractor.
o

Equation ~16! simply expresses the time evolution in th
presence of the correction, Eq.~15! relates the Lagrange
multipliers to the corrections, and Eq.~14! determines the
sought after sequence, and in fact deserves a closer
since it contains information about a new feature of the
namics, not shared by the unperturbed map. Solving Eq.~15!
and substituting the result in Eq.~14! indicates how one may
go about calculating the perturbation sequence. Traditi
ally, in applying the optimal control method to a linear pro
lem,N is determined in advance and a variation with resp
to the final state,x(N), determines the final value of th
Lagrange multipliers,lN . Knowing lN , Eqs.~14! and ~15!
are then used to compute the correction sequence in adv
and apply the results when the system is in operation, wh
leads to the desired final state@11#. In the present applica
tion, however, we consider the steady state form of the
timal control,N→`. To eliminate the Lagrange multiplier
from the expressions, Eqs.~14! and ~15! are combined to
give

e i5
1

B
¹g~xn!

1

DF@xi #
1e i21

1

DF@xi #
, ~17!

giving a 2D system wherexi11 is given by Eq.~16!. To
examine the stability of the above system, the eigenvalue
the Jacobian for Eq.~8! evaluated at the final state ar
needed. The performance index@Eq. ~2!# leads to the fixed
point of the map,x* . For the particular case of a 1D map, th
Jacobian of this 2D system is

J5S d1 f
e2

d
11

1

f S deD
2

f

d2
@~ed!21 f e41e2#

f

d Fe21 1

f S deD
2

1
1

f G D ,

~18!

FIG. 3. ~a! The x component of the controlled Henon map as
function of time.~b! The size of the control.
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55 1319PERIOD CONTROL OF CHAOTIC SYSTEMS BY OPTIMIZATION . . .
where d5F8(x8)Þ0, e5F(x8)21, and f51/B. For a
simple map, such as the logistic map, we can solve the c
acteristic equation det(J21n)50 to determine the eigenva
ues. This yields intervals~of nonzero measure! of f on the
real line where bothun1u and un2u are less than 1 and henc
convergence to the fixed point@9#. Even though the above
method is stable and leads to the desired final state, the
yet a simplification that leads to a less cumbersome presc
tion for implementing the control algorithm. Loosely spea
ing, once we haveue i u small, we want to forceue i11u→0,
which modifies the control algorithm to be

e i'
1

B
¹g~xn!, ~19!

which is the same result as before.
For the case when the system’s equations are not knowa

priori , and reconstructing a map from data is eminent, mo
toring g(xn) as opposed to its derivative might become
issue, and then an appropriate error measureg(xn), such as
the one in which the controller is linear inF(xn) or even
xn ~as in traditional feedback!, might be more appropriate
Of course when faster convergence is desired, Eq.~7! may be
used. Faster convergence comes about as a consequen
the inclusion of¹g(xn) ~in the expression for the correc
tions!, which leads to an enlargement of the control region
opposed to straightforward feedback~or the type Pyragas
suggested@4#! where the small perturbations control is app
cable. Detailed studies of these issues will be given e
where.

C. Noisy state variables

An important question concerning any method for cont
of chaos is its robustness against external noise. This iss
very relevant in practical applications where dealing w
noise and its consequences are inevitable. We put our a
rithm to the test by applying noise to our numerical simu
tions ~keeping in mind that the optimization is to the lowe
order!. We found, for reasonable noise levels, control is
fective as long asG >cs, where G is the threshold for
g(xn), c a positive constant of order unity, ands the noise
level @9#. As expected, for a small threshold it takes long
for the control to become effective@1#, as is shown in Fig. 4
for the logistic map.

V. CONCLUSION

We conclude with a series of remarks intended to illu
trate the scope of application and versatility of our appro
to the control of chaotic systems.

~i! We construct an error function, the performance ind
as a measure of the deviation from the desired behavior
such, the error function is general in that it needs to inclu
only the performance specifications~e.g., periodicity! and
nothing else. This means that if any of the attributes of
desired time evolution can be embodied in an error functi
the method we present renders the system controlled by
timizing the constructed error function. A performance ind
may be any observable, the output intensity of a laser, or
efficiency associated with heat dissipation in a power ar
~field effect transistors!.
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~ii ! Within the framework of our strategy, a similar tech
nique can be applied directly to a system of ordinary diff
ential equations,dx/dt5F(x,p). There are in fact two ap-
proaches to this problem. First, the Poincare´ surface of the
section may be used to develop a map, and apply the con
to the map directly. Second, by minimizin
g(x,T)5@x(t)2x(t2T)#2, the chaotic flow is stabilized to a
limit cycle, whereT can be found by monitoring the evolu
tion of g(x,T) @12# ~detailed discussion will be given in@9#!.
However, as a special case of stabilizing a steady st
F50, we chose the Lorenz system@13#. By minimizing
uuF(x,p)uu, the system was controlled to the steady state
the origin, Fig. 5. This method of control can be used
stabilize orbits not on the attractor, still keeping the cont
small.

~iii ! If an accurate model of the system is not availab
we can resort to the methods of embedding@14#. We can
reconstruct a local version of the map around points
which g(xn) is small. The procedure of optimization o
g(xn) can then be applied straightforwardly@15#.

FIG. 4. The average time~the number of iterates in the case
maps! it takes for the control to become effective vs the size of
threshold forg(xn),G ~for the logistic map!.

FIG. 5. The Lorenz system is stabilized around the steady s
(x,y,z)5(0,0,0) orbit. The control perturbation was smaller th
4% of the extent of the attractor. The control may still be achiev
with smaller values of control signal; however, it would take long



is
e

, f

of
in-
s-

rol
te,
ems
s
ing

ar
the
to
un-
of

-

ay
o a
of

rt.
rt.

ks
pe

of

1320 55ALI FOULADI AND J. A. VALDIVIA
~iv! We alluded earlier to the feasibility of applying th
method to slowly driven systems~or systems that chang
‘‘slowly’’ over time !. The periodic orbits of a driven system
are no longer fixed objects of the phase space, and in fact

FIG. 6. ~a! The unperturbed but driven Lorenz system loo
qualitatively similar to the undriven system, however here the
riodic orbits are not fixed features of the phase space.~b! In the
presence of control, the orbit is very quickly taken to the vicinity
the moving steady state.
tt
or

small driving amplitudes for which the structural stability
the system is intact, the periodic orbits move while rema
ing topologically equivalent to the periodic orbits of the sy
tem without driving. We take the Lorenz system@13# and
drive one of its parameters sinusoidally in time. The cont
moves the system ‘‘close’’ to the actual driven steady sta
Fig. 6. This technique may be relevant in the case of syst
similar to the heart@6#, for which the system’s characteristic
change under different operating conditions, hence chang
the phase space coordinates of the periodic orbits.

~v! The method of optimal control, as applied to line
systems, is well established in the literature. We believe
methods of optimal control, though not directly applicable
nonlinear systems, may be modified to yield a broader
derstanding of the mechanisms responsible for the type
periodic behavior brought on by arbitrary perturbations~of
the kind introduced in@5#! of a chaotic system. Our prelimi
nary results indicate that using an approach outlined in@7#, a
strategy very similar to that of standard optimal control m
be devised to control a low-dimensional chaotic system t
periodic behavior. A complete reporting and discussion
these results will be given elsewhere@9#.
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